Birzeit University
 Faculty of Engineering and Technology
 Department of Civil and Environmental Engineering

ENCE 436

Reinforced Concrete Design II
Quiz 1 \& Exam
Thursday, April 29, 2021

For all questions, $\mathrm{fc}^{\prime}=\mathbf{3 5} \mathrm{MPa}, \beta_{1}=\mathbf{0 . 8 0}, \mathrm{fy}=\mathbf{4 2 0} \mathrm{MPa}, \gamma_{\text {concrete }}=24 \mathrm{kN} / \mathrm{m}^{\mathbf{3}}\left(\mathbf{2 . 4} \mathbf{t} / \mathrm{m}^{\mathbf{3}}\right)$

Q1. Design a short, circular, spirally reinforced column to support the ultimate loads applied for each case. Use ρ_{g} of approximately $2 \%, \Phi 28$ longitudinal bars and assume a $\Phi 10$ spiral for parts a, b, and c .
a. (5 points) An interior concentrically loaded column with $\mathrm{Pu}=650 \mathrm{t}$.
b. (10 points) An exterior eccentrically loaded column with $\mathrm{Pu}=650 \mathrm{t}$ and $\mathrm{Mu}=65 \mathrm{t}$.m.
c. $(10$ points $)$ A corner column with $\mathrm{Pu}=650 \mathrm{t}, \mathrm{Mux}=35 \mathrm{t} . \mathrm{m}$, and $\mathrm{Muy}=65 \mathrm{t} . \mathrm{m}$.
d. (10 points) If the column has a diameter of 65 cm , and is reinforced with $14 \Phi 30$ bars, design the spiral, and check the longitudinal bar spacing.

Q2. In an intermediate floor in a braced building, all columns are square with $\mathrm{b}=\mathrm{h}=45 \mathrm{~cm}$, while all beams are rectangular with $\mathrm{b}=45$ and $\mathrm{h}=60 \mathrm{~cm}$. Column reinforcement consists of 4 $\Phi 32$ bars with $\Phi 10$ ties. The center-to-center beam span $=9 \mathrm{~m}$, and the column center-tocenter height $=8 \mathrm{~m}$. For an interior column, the service loads and moments are:
$P_{\text {dead }}=120 \mathrm{t}, \mathrm{P}_{\text {live }}=80 \mathrm{t}$
$\mathrm{M}_{2}-\mathrm{D}=8 \mathrm{t} . \mathrm{m}, \mathrm{M}_{2}-\mathrm{L}=22 \mathrm{t} . \mathrm{m}$
$\mathrm{M}_{1}-\mathrm{D}=8 \mathrm{t} . \mathrm{m}, \mathrm{M}_{1}-\mathrm{L}=22 \mathrm{t} . \mathrm{m}$
a. (10 points) Determine K using the ACI nomograph.
b. (5 points) Is this column slender?
c. (20 points) Assuming this column is slender, determine the magnified eccentricity for which this column should be checked.

Q3. A two-way slab on beams consists of ($9 \mathrm{~m} \times 11 \mathrm{~m}$) panels, four in each direction, measured center-to-center of columns (i.e., 36 mx 44 m overall dimensions). All beams have a width $\mathrm{b}=$ 50 cm . The slab is solid with a thickness of $27 \mathrm{~cm}(\mathrm{~d}=23 \mathrm{~cm})$. The service $\mathrm{DL}=1.3 \mathrm{t} / \mathrm{m}^{2}$ (including self-weight), and the service $L L=0.6 \mathrm{t} / \mathrm{m}^{2}\left(\mathrm{Wu}=2.52 \mathrm{t} / \mathrm{m}^{2}\right)$. Assuming α_{fm} for all panels exceeds 2.0:
a. (10 points) Check the adequacy of the slab thickness for shear. Provide an appropriate shear diagram.
b. (15 points) For a corner panel, determine the moments at all critical locations for a $1-\mathrm{m}$ wide column strip and a $1-\mathrm{m}$ wide middle strip in the long direction.
c. (5 points) Present your answers on a sketch of the panel.

